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TECHNICAL NOTE 2036

CHARTS OF AIRFIANE ACCELERATTION RATIO
FOR GUSTS OF ARBITRARY SHAPE

By Bernard Mszelsky
SUMMARY

The equation of vertical motion for an airplene flylng in gusty air
is simplified in order that its solution is a function of only two
paremeters, namely, the mass parameter of the airplane and the shape of
the gust the airplane 1s penetrating. The solutions of the equation are
presented in the form of charts that can be used for estimating rapidly
and easily the acceleration ratios encountered by airplanes with
different mass perameters penetrating a sharp-edge gust, & gust of
arbitrary shape, or a triangular gust.

INTRODUCTION

For many problems of gust loads it has been found practical to
calculate the loads as if they were for a rigid airplane restrained in
pitch under the action of the gust. Although previous investlgations
have presented solutions for perticular mass parameters and gust shapes,
they have not been found sufficlently accurate. In the present paper
the equation of motion has therefore been solved for a large range of
mass perameters to obtain charts of airplane reactions to specific
gusts and to provide a means for obtalning loads on airplane wings for
arbitrary gust shapes. The charts presented are based on two—
dimensional unsteady—Llift curves and a numerical solution of the
equation of motlon.

SYMBOLS

dcC
EG—L- slope of wing lift curve, per radian
o} mass density of alr, slugs per cubic foot

v forward velocity, feet per second

I
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W airplane weight, pounds

8 area of wing, square feet

c mean aerodynamic chord, feet

g acceleration due to gravity, feet per second per
gecond

8 penetration into gust, chords

As increment of s used in numerical solution

Cr, ~ normalized unsteady-lift function due to penetration

g of a sharp-edge gust

¥n forcing function in recurrence formuis due to
pentration of gust

Cltx, normelized unsteady-lift functiom for a unit change
of angle of attack

Ay transformed unsteady-lift function (1 - CIG(E))

U gust velocity, feet per sgecond

H, Hy, H, . . . gradlent distances of gusts, chords

W
ug mass paresmeter [ -———————
| dCl .
P 3 g
An(s) load~factor increment
An, load~factor increment as computed by the gust-load
ac
P g5 Vnex
formule | ——————
oW

An(s) /AnS acceleration ratio
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(ﬁ-ﬁl) acceleration ratio for penetration of a sharp-edge

8 /geg gust

I 'integral of acceleration ratio An/Ang

Subscripts:

max maximm value

m integer denoting m Increments of s In recurrence

formula (s/As)

1 denotes point at which solution applies
DERIVATION AND USE OF CHARTS

The following assumptions are made for stating the equation of
motion:

(1) The gust velocity is uniform across the span and perallel to
the vertical axis of the airplane a2t any instant.

(2) The airplane is in steady level flight prior to entry into
the gust. : :

(3) The airplane can rise but does not pitch under the action of
the gust.

(4) The airplene is rigld.

(5) The 1ift increment of the horizontal tail due to the gust and
the airplane motlons 1s negligible as compared to the wing 1ift
increment.

The following equation for describing the vertical motlon of the
alrplane 1s written in terms of acceleration ratios:

An(sq) d(U(S)) 8
1

The first term on the right represents the force due to the gust and
the second, the alleviation due to the vertical motion of the alrplane.



NACA TN 2036

The values of the load-factor increment Ang and mass param—
eter Hg may be obtalned from the characteristics_ of the alrplane and
its flight conditions by the following equations:

My = ————— (2)

hg = —— (3)

Sherp-Edge Gust

For a sharp-edge gust (fig. 1(a)), equation (1) can be rewritten

An(sg) _ _1 [A An(s)
(Ans )seg = CLg(S) o ‘£ Clu(sl - 8) —ZIS-S— ds (&)

& g

Equation (4) has been solved by a numerical method accerding to
reference 1 and the solution is written in the form of & recurrence
formula. TUtilizing the procedure in this reference and making sub—

stitutions for the unsteady-lift functions gives the numerical solution
of equation (4) in recurrence form; thus,

(), =M v Tola + (42 e R Ks(g‘ﬁ‘)H

B / e 8 8

+ Ks@n—n-;)H + KT@:%B)M + KB(%)M (5)
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where

F = ch(m) = CLS(B)

o s PR a0 (B () (), ] @

g 3 ok
K o188 (5 2k
h " 2k 3
g8
_KBss My 1
Hg 3 24

(72)

(7b)

(7¢)

(7d)

(Te)

(7£)
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I ABK1A5
= ——— (78)
“ 3ug
Ky = 2116 | (7h)
3“8
and
A =1-0p(s) (8)

Equation (5) 1s evaluated for a range of mass parameters from 10
to 100 and the results are shown in figure 2. In the calculations, the
ungteady—1ift functions derived for the two~dimensional wing are
assumed to be made applicable to the finite wing by replacing the slope
of the 1ift curve for the two-dimensional wing by the slope of the 1lift
curve for the finite wing. These unsteady--li1ft functions due to
penetration of a sharp-edge gust CLg(s) and an instantansous unit

angle—of-attack change CLu(s) for a two-dlmensional wing were normalized

from those given 1ln reference 2.

Although equation (4) can be solved in closed form by means of
operators, the solution is unwieldy and the numerical method was
adopted for ease 1n computation.

The inaccuracies incurred in the solution by the numerilcal method
are principally & functlon of the mass parameter “g and the
increment As. For high values of Hg and small values of As the

accuracy of the calculation is increased, conversely for low values
of bg and large velues of . As the accuracy'is decreased. When the

recurrence equation was evaluated, the value of As was appropriately
changed for the range of Hg consldered.
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Arbitrary Gust Shape

In order to calculate the response to an arbitrary gust shape, the
response to a sharp-edge gust may be used as an indicial response with
the gust shape as a forcing fumction in Duhamel's integral. (See
reference 3.) Thus,

(51) . dL(TI(S))
on(sq 1 U
Tty () e ©

Various methods are given in reference 4 Ffor evaluating equation (9)
numericaelly; however, 1f the forcing function consists of a series of
gtraight lines, equation (9) can be modified by the following procedure:
For a linear disturbance starting from s = 0 with a slope 1/H and
extending to infinity (fig. 1(b)), equation (9) can be rewritten as
follows:

an(s) 1 f(a_ggg;) as (10)
fog  H &85/ seg

]

This equation can be evalumsted for different mess parameters by merely

M) for different values of msps peram—
Ang seg

eter and multiplying the result by the constant l/H. In figure 3 ‘the

integrating the function (

integrations of the é—n-(fl) regsponses are given for a range of mass
Ang  /geg ‘

parameters. When the ordinates for a curve are multiplied by the

slope 1/H, the resulting response ls the solution of equation (10). By

superposition of a series of functions of the type given by equation (10),

this approach may be extended to predict the responses to disturbances of

the type shown in figure 1l(c) where the disturbance is composed of

straight-line segments. Figure 3 1s used to evaluate thls response by

the followlng steps: '
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(a) Evaluate the following integrals in a mamner similar to that
used for equation (10), with the ald of figure 3:

\
1.
ElI(B)
L1(s)

\ (1)
L1(s)

—l—I(_s)
B,

(b) Superpose the time histories obtained from step (a) so that the
disturbance function shown in figure 1(c) will be formed by the addition
of the slopes 1/H;, 1/H,, l/H3, and 1/H,. Note that in the course

of this superposition, the functions corresponding to the slopes
1/, 1/H, end 1/H, must be displaced by the intervals H) for the

slope 1/H,, H, +H, for the slope l/H3, and H, + B, + H3 for the
slope 1/H,. The final response for the disturbance shown in figure 1(c)
mey then be obtained from the following equation:

isgs) - ']%]—_I(S) - H—];:I(B -H) - ?Il-é-l(s - )

+i12—I(s-Hl-32) -E];'I(B‘HI'HZ) +EJ';I(B"H1_H2-H3)

+£[’Z-J:(ss-zrl-1.=r2_-1ar3)-i[%l;x(.es--ﬂl--HQ-H3 - B,) (12)
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Although equation (12) appears very lengthy, the actual
computations are relatlively simple since all the integrals for a
particular mass parameter have already been determined (fig. 3). The
values of each Integral multiplied by its appropriate constant can be
tabulated in separate colummns displaced by lts corresponding interval.
The addition of the elements in each row of these columms will determine

the final response élii)-.
Ang

Triangular Gust

Since the triangular gust shown in figure 1(d) was used in many
calculations, a chart was prepared for thils specific shape. The

response to this type of disturbance for a range of mass parameters p g

and gradient distances H was obtalned by the method previously
described for gust shapes approximated by stralght lines. TFlotting the

maximm values of these responses (é‘i- as g function of H wilth
Ang
p.g as a parameter gives the chart shown in figure 4. As a matter of

interest the values of (Al—;) are plotted as a function of n
max

8

with the gradient distance H ag the parameter in figure 5. When the
mass parameter of the alrplane (equation (3)) and the gradient distance

H are known, the valus of (Ai) is regdily obtained directly.
mex

ong
Eveluating Ang by equation (2) permits the value of Lo ina

g

triangular gust to be determined from the acceleration ratio (%—)
8 /max

CONCLUDING REMARKS

The simplified equation of vertical motion of an airplane has been
solved to obtain charts of acceleration ratic for different gust shapes.
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The rosults permit the rapid estimation of maximum acceleration ratios
for gusts of arbltrary shape. :

langley Aeronautical Laboratory
Netional Advisory Committee for Aerqna.utics
Langley Air Force Base, Va., August 1, 1949.
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Figure 2.- Acceleration ratio for a wing penetrating a sharp-edge gust for vearlous mass parameters.
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¥lgure 3.~ Integration of acceleration ratio for a wing penetrating a sherp-edge gust far
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Figure 5.- Maxlmm acceleration retlo for a trlangular gust as a functlon of mass paremeter-



